

REFLECTARRAY DESIGN BASED ON RECTANGULAR PHOENIX

CELL

Celeste Tan1, Keenan Tan Han-Ming2, Chia Tse-Tong3, Tay Chai Yan3

1Raffles Institution (Junior College), One Raffles Institution Lane, Singapore 575954
2NUS High School of Math and Science, 20 Clementi Ave 1, Singapore 129957

3DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Abstract

This paper presents a novel broadband single-substrate reflectarray design using rectangular

Phoenix cells. The reflectarray is designed with a centre-fed horn to produce a broadside beam at

12.7 GHz for the vertical polarization. The rectangular Phoenix cell achieves a more linear phase

change (compared to a square Phoenix cell), allowing for more accurate phase control. Full phase

coverage can be achieved at the designed band 12.1-13.9 GHz. The measured results show that the

proposed reflectarray achieved 30.1% efficiency.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

1

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

2

1. INTRODUCTION

Printed reflectarrays are arrays of printed elements with varying sizes, each tailored to

compensate for the different phase delays from the illuminating feed. They have the most

salient features of both the traditional parabolic reflector antenna and microstrip array

technology. [1] Due to their low profile, low mass and flat structures, reflectarrays can

overcome mounting issues and conformal requirements. They are commonly used in micro-

spacecrafts and satellites. [2]

One interesting element used for a reflectarray is the Phoenix cell, whose geometry

exhibits a cyclic evolution, returning to its initial arrangement after a 360º phase cycle. [3]

However, as far as the authors are aware of, the Phoenix cells used thus far are all squarish.

In this paper, we propose a rectangular Phoenix cell in Section 2 [4]. The most optimal

prototype of the reflectarray using the given unit cell is determined in Section 3, and results are

discussed in Section 4.

2. UNIT CELL CONFIGURATION

The proposed 9×12 mm2 unit cell is shown in Fig. 1. It comprises the central

rectangular patch and the outer ring, which are fixed. The size-variable ring grows in size

from the inner rectangle patch to the outer ring, with a width:length ratio of 7:10. The unit

cell is fabricated on a 0.5mm-thick FR4 substrate. The single layer unit cell of FR4 allows for

simpler and cheaper fabrication. The substrate is separated from the ground plane by an air

gap of 6mm. This spacing is optimized through simulation (see Appendix A, Fig. 1 for

process) to achieve a slow-varying phase slope as shown in Fig. 2. The phase shift is

determined by the growth variable s. The total phase shift is 360º which is typical of a

Phoenix cell [3].

Fig. 1. (Left) Geometry of the proposed rectangular Phoenix cell. (Right) Illustration of growing ring (red).

To investigate the phasing behaviour of the unit cell, plane waves polarized vertically

and horizontally at 12.7 GHz were incident normally on the unit cell using periodic boundary

conditions in CST Studio Suite. The phase and magnitude of the reflected wave against the

scaling parameter s (between 0 and 1) are plotted in Fig. 2, with “Rectangle long pol” and

“Rectangle short pol” representing the polarized wave parallel to long side (vertical) and

short sides (horizontal) of the rectangular cell, respectively.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

3

Fig 2. Phase responses of the rectangular Phoenix

cell vs. scaling parameter, s, for 2 polarizations at

12.7GHz

Fig 3. Phase responses of each Phoenix cell at

12.7GHz

The optimal polarization at 12.7GHz is thus along the longer side. We compared this

unit cell design against the square Phoenix unit cell design [5] in Figure 3. In this work, the

lengths of the squares are equal to the short (9mm) and long sides (12mm) of the rectangular

design, respectively (see Fig. 4). All of them share close to the same phase range of 360° due

to the Phoenix cell characteristic. The key characteristic of the rectangular Phoenix cell (for

long pol) is its gentlest phase gradient, which is almost linear. The linearity allows for better

and more accurate phase control as s changes. It will also mean greater tolerance if there is

any slight fabrication error.

Fig 4. Three different Phoenix unit cell designs: 9×9mm2, 12×12mm2, 9×12 mm2.

3. DESIGN OF REFLECTARRAY

Using the three unit cell designs in Fig. 4, 3 reflectarrays with the aforementioned

constraints of the substrate’s size were designed and simulated. Each approximately A4-size

reflectarray is illuminated by a feed horn placed vertically above its geometrical centre at the

optimal height of 179.2mm, determined from the -10dB point of the horn’s main beam. An

example of the reflectarray using the rectangular Phoenix cell is shown in Fig. 5.

Fig 5. (a) Phase at each point calculated and represented by color (b) 2D form of best designed reflectarray

accounting for the phase at each point (c) The reflectarray with all its components in CST (d) The milled and

mounted prototype

9mm

9mm

12mm

9mm

12mm

12mm

(b) (a) (c) (d)

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

4

The simulated gains and their corresponding efficiencies of the three reflectarrays are

summarized in Table 1. The larger square unit cell array is much less efficient than the other

two designs. This is because the phase distribution across the reflectarray with the larger

square unit cell is a poorer approximation of the desired distribution. The smaller square unit

cell and rectangular unit cell arrays share similar efficiencies.

In addition, the rectangular cell has an almost linear phase shift as well at 13.4 GHz

(Appendix A, Fig 2). Therefore, the same rectangular Phoenix cell can potentially be used for

either polarization, albeit at different frequencies.

Table 1. Simulated gains and computed efficiencies of reflectarrays using different unit cells.

 Smaller Square Larger Square Rectangle

Max Gain (dBi) 25.92 23.77 26.09

Efficiency (%) 33.34 20.33 34.71

Figure 6 shows that the reflectarray antenna using rectangular Phoenix cells has about

1.77 GHz bandwidth (or 13.6 %) for gain of 26.5±0.8 dB. At the designed frequency of

12.7GHz, the simulated realized gain of the reflectarray is 26.714 dBi, giving it a 40.1%

efficiency.

Fig 6. Gain vs. frequency for vertical polarization.

4. EXPERIMENTAL VALIDATION

The reflectarray using the proposed rectangular Phoenix unit cell shown in Figure 5

has been designed (see Appendix D for program) and fabricated. To create the air gap, 6 mm

PLA spacers with a ±0.01 mm tolerance were used. Absorbers were placed around the

reflectarray to prevent other reflections from the metal mount. The reflectarray was held

down by masking tape. The support for the horn is made of wood, reducing the loss incurred

from its blockage. The reflectarray is measured in the tapered chamber at TL@NUS (see

Appendix B for photographs).

The measured results are compared against simulated results in Figure 7. The

maximum gain in the measured azimuth and elevation (see also Table 2), differs by about

0.4dBi. While the difference is within measurement error, it could also be due mechanical

alignment error between the reflectarray and the horn. We estimate that the reflectarray is

misaligned in the broadside by about ±1°. Comparing the gain in the azimuth cut against the

simulated gain, the gain difference is about 1.2dBi. This loss in gain can be seen in the higher

measured first sidelobes.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

5

Fig 7. Measured radiation patterns for the reflectarray for azimuth and elevation cuts at 12.7GHz

Table 2. Realized gain of reflectarray prototype.

Measured in

Azimuth Cut

Measured in

Elevation Cut
Simulated

Max gain (dBi) 25.478 25.096 26.714

Efficiency (%) 30.1 40.1

The measured gain-bandwidth is compared against the simulated results in Figure 8.

The measured results are lower than the simulated results as expected. The gain loss is

possibly due to the blockage by the horn and its support, and misalignment issues. The

corresponding efficiency of the reflectarray against frequency is plotted in Figure 9 [1]. The

maximum efficiency is at 13.6 GHz.

Fig 8. Gain against frequency of both the measured and simulated reflectarrays

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

6

Fig 9. Efficiency against frequency for measured and simulated reflectarrays

5. LIMITATIONS

The reflectarray was designed for an existing horn that was optimal for 8.0-12.4 GHz,

even though our frequency of interest was 12.7 GHz. The horn also had a circular shaped

radiation beam at -10dB. Therefore, it will not be able to efficiently illuminate the rectangular

reflectarray. To improve the illumination efficiency, the horn can be offset from the centre of

the reflectarray so that its elliptically shaped beam at the plane of the reflectarray will

illuminate a wider portion of the reflectarray.

Due to time constraints and availability of the measurement resources (MP and

facility), we only had half a day to set up and measure the reflectarray. As the feed horn was

not aligned accurately in the broadside of the reflectarray (feed horn was “centered” using a

plumbline which was susceptible to human error), the horn and reflectarray was offset by

about 1°, causing a shift in the main beam of the reflectarray. Furthermore, the reflectarray

was not secured enough, such that it suffered a noticeable shift every time it was moved or

mounted. The measurement was thus compromised.

6. FURTHER WORK

 After fabricating the reflectarray, we did an analysis on the optimal height of the horn

to maximize efficiency of the antenna [6]. We modeled the feed pattern F of our horn as a

𝑐𝑜𝑠𝑞𝜃 function. Approximating the feed radiation pattern to be perfectly circular, we got a 𝑞𝑒

and 𝑞ℎ of 8.29 (in the E- and H- planes), where the horn has -10dB at 𝜃=29.5°. We then

plotted a graph of efficiency against R/λ by calculating its spillover efficiency and

illumination efficiency (see Appendix E for program written).

Our fabricated height of 179.2mm (or R=7.59λ) was obtained by using the -10dB of

the horn’s radiation pattern at the long edge of the reflectarray to minimize spillover. The

optimal height with maximum efficiency is 66.3% using the written program was found to be

247.8mm (or R=10.5λ) as shown in Figure 10. For our chosen height, the expected efficiency

is 59.9%. Thus, the efficiency of the proposed reflectarray antenna could be improved upon if

the horn was moved further away from the array.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

7

Fig 10. Efficiency against height (𝜇𝑖: illumination efficiency, 𝜇𝑠: spillover efficiency).

7. CONCLUSION

A broadband reflectarray design using a rectangular Phoenix cell has been designed.

The reflectarray has a gain of 26.5±0.8 dB from 12.1 to 13.9 GHz. The Phoenix cell achieves

an almost linear phase shift, allowing for greater phase control and increased fabrication

tolerance. The designed reflectarray achieved an efficiency of 30.1%, compared to the

simulated 40.1%. The measured results are not ideal, partly caused by inefficient illumination

and alignment issues which can be further improved on.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

8

REFERENCES
[1] J. Huang and J. A. Encinar, Reflectarray Antennas, by Institute of Electrical and

Electronics Engineers, John Wiley & Sons, 2008.

[2] Adel, S., & Hammad, H. Modified Phoenix cell for microstrip reflectarray antennas,

2012.

[3] Chao Tian, Yong-Chang Jiao, and Weilong Liang, “A Broadband Reflectarray Using

Phoenix Unit Cell,” Progress In Electromagnetics Research Letters, Vol. 50, 67–72, 2014.

[4] Lu Guo, Peng-Khiang Tan, and Tan-Huat Chio, “Single-Layered Broadband Dual-Band

Reflectarray With Linear Orthogonal Polarizations,” EEE Trans. Antennas and Propag.,

vol. 64, no. 9, pp. 4064-4068, Sept. 2016.

[5] Ruyuan Deng, Fan Yang, Shenheng Xu, and Maokun Li, “Design of a Single-Layer Dual-

Band Reflectarray Using Phoenix Elements,” 2015 Asia-Pacific Microwave Conference

(APMC), 2015, pp. 1-3, doi: 10.1109/APMC.2015.7413393.

[6] Zebrowski, M., “Reflectarray Antennas Illumination and Spillover Efficiency

Calculations for Rectangular Reflectarray Antennas,” High Freq. Des., Vol. 1, 28-38,

Dec. 2012.

ACKNOWLEDGEMENTS
 We would like to acknowledge and give our warmest thanks to our mentors, Dr Chia

Tse Tong and Dr Tay Chai Yan, from DSO National Laboratories, for making this project

possible. Their invaluable guidance and support during the process made us stay focused and

motivated, clarifying any doubts we had about the topic.

 We would also like to thank the DSO National Laboratories for providing us with the

opportunity and experience, and Temasek Laboratories (TL) @ NUS, especially Mr Tan

Peng Khiang, for helping us with the use of the lab resources for fabrication and

measurement of our fabricated antenna.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

9

APPENDIX A: Antenna design process

In this section, additional information or factors considered in designing the antenna is

provided. Supplementing graphs of lesser importance are placed here, followed by a page

number that the reader should reference for context on the graphs and how they factor into

design.

Fig 1 (Page 1). Varying the air height to obtain optimal phase curve shape

Fig 2 (Page 2, Page 3). Phase responses of the rectangular Phoenix cell for each sub-wavelength element at

13.4GHz for both polarizations.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

10

Fig 3 (Page 3). Gain of all the different unit cell array in azimuth cut (Table 1)

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

11

APPENDIX B: Information on reflectarray prototype

In this section, photos of the fabricated reflectarray prototype in construction or measurement

are placed to give readers a better understanding of the design. Information on the feed horn

is placed here as well.

1. Reflectarray milled out of FR4 in Temasek Laboratories @ NUS.

2. Reflectarray setup mounted in the antenna measurement chamber at Temasek Laboratories @ NUS

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

12

3. Different perspectives of the feed horn used and its dimensions in CST

4. Assembly parts of the prototype (Left) 3d printed 6mm spacers (Middle & Right) Mounted reflectarray. Note

that absorbers were placed on the metal support that is larger than the reflectarray.

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

13

APPENDIX C: Code developed for auto-generation of .dxf reflectarray

files of proposed design

There are 9 parts to this section explaining the code written in Python used in the reflectarray

design.

1. Automation to generate all five files together

2. Obtaining the size of the array, the height of the horn, and the functions to determine

phase at each position of the reflectarray

3. Reading and formatting the data of S11 graph

4. Testing the different interpolation types

5. Setting up the writing of the scripts for LibreCAD to create .dxf files

6. Automation for generation of the .dxf files

7. Import needed libraries

8. Using the functions written above to read data of S11 curve, and interpolate it using direct

interpolation (which gave the best result)

9. Using the graph generated and functions above to get the phase at each point of the

reflectarray and adjust the drawing accordingly

Each section contains the code used as well as comments briefly explaining what each section

does. When pieced together, the entire program should run using a simple iteration by

changing the type_of_gen variable from 0 to 5, with 0 producing the overall.dxf with all the

components in one .dxf file.

1. Automation to generate all five files together
actual = True #change to false if maximise array

phi_0_angle = 30.368 * math.pi / 180 #smaller angle

phi_90_angle = 27.8 * math.pi / 180 #larger angle

file_names = ["overall", "inner_ring", "inner_ring_subtract", "outer_ring", "outer_ring_subtract", "inner_rect"]

file_name = file_names[type_of_gen]

folder_name = "<insert folder name>"

printfile = open(f"{folder_name}/prints.txt", "w") #to record the phase and ss of each positions

info_file = open(f"{folder_name}/info.txt", "w") #to record the height, frequency and everything that is printed

outfile = open(f"{folder_name}/{file_name}.txt", "w") #for generating the actual commands

2. Obtaining the size of the array, the height of the horn, and the functions to determine phase

at each position of the reflectarray
thetaB = 0

phiB = 0

freq = 12.7*pow(10, 9)

wavelength = 3*pow(10, 8)*pow(10, 3)/freq

k0 = 2*math.pi/wavelength

UCsize_length_x = 9 #mm

UCsize_length_y = 12 #mm

a4size_x = 297 #mm

a4size_y = 210 #mm

def determine_across_down(fullsize_x, fullsize_y):

 down = fullsize_y // UCsize_length_y - 2

 horn_height = (down * UCsize_length_y / 2) / math.tan(phi_90_angle)

 max_10db_x = horn_height * 2 * math.tan(phi_0_angle)

 across = int(max_10db_x // UCsize_length_x) if actual else fullsize_x // UCsize_length_x - 2 #-2 is taken away

because of gap already beside

 return across, down, horn_height

across, down, horn_height = determine_across_down(a4size_x, a4size_y)

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

14

center_x = across*UCsize_length_x/2

center_y = down*UCsize_length_y/2

source_z = horn_height

def getDi(xi, yi):

 # assuming xi, yi is the distance from the center in cartesian x and y

 di = math.sqrt(abs(xi)**2+abs(yi)**2+source_z**2)

 return di

def get_phase(x, y):

 xi = UCsize_length_x/2+x*UCsize_length_x-center_x

 yi = UCsize_length_y/2+y*UCsize_length_y-center_y

 di = getDi(xi, yi)

 phase = k0*(di-(xi*math.cos(phiB)+yi*math.sin(phiB))*math.sin(thetaB))

 return phase, xi, yi

3. Reading and formatting the data of S11 graph
#reading data

def read_data():

 infile = open("<insert results file>.txt", "r")

 data = infile.read().replace('"',"").strip().split("\n")

 infile.close()

 x_values = []

 y_values = []

 # data[0] = data[0][3:]

 correction = False

 for index, item in enumerate(data):

 x, y = item.split("\t")

 x_values.append(float(x))

 if index == 0:

 first = float(y)

 if index != 0 and abs(float(y) - float(prev_y)) > 100: #accounting for phase jump

 correction = True

 if correction:

 y_values.append(float(y)-first)

 else:

 y_values.append(float(y)-first+360)

 prev_y = y

 # print("original ss:", x_values)

 # print("original phase:", y_values)

 return x_values, y_values

4. Testing the different interpolation types
def linear():

 plt.plot(x,y,'ro')

 plt.plot(x,y, 'b')

 plt.title("Data set and linear interpolation")

 plt.show()

def direct():

 tck = interpolate.splrep(x, y, s=10)

 xfit = np.arange(-282, 80, 1)

 yfit = interpolate.splev(xfit, tck, der=0)

 plt.plot(x, y, 'ro')

 plt.plot(xfit, yfit,'b')

 plt.plot(xfit, yfit)

 plt.title("Direct spline interpolation")

 plt.show()

def univariate():

 s = interpolate.InterpolatedUnivariateSpline(x, y)

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

15

 xfit = np.arange(0, 1.1, 0.0000001)

 yfit = s(xfit)

 plt.plot(x, y, 'ro')

 plt.plot(xfit, yfit,'green')

 plt.title("InterpolatedUnivariateSpline interpolation")

 plt.show()

5. Setting up the writing of the scripts for LibreCAD to create .dxf files
W = 7 #of outer ring

L = 10 #of outer ring

inner_W = 2 #of inner ring

inner_L = inner_W*L/W #of inner ring

t = 0.3 #thickness of outer ring

h = 0.001 #thickness of trace

def generate_command(xi, yi, width, height):

 outfile.write('li\n')

 outfile.write(f'{xi-width/2},{yi-height/2}\n')

 outfile.write(f'@{width},0\n')

 outfile.write(f'@0,{height}\n')

 outfile.write(f'@-{width},0\n')

 outfile.write('c\nk\n\n')

def generate_inner_ring(xi, yi, ss):

 global check_command_ran

 width = inner_W+(W+2*t-inner_W)*ss

 height = inner_L+(L+2*t-inner_L)*ss

 generate_command(xi, yi, width, height)

 check_command_ran = "inner_ring"

def generate_inner_ring_subtract(xi, yi, ss):

 global check_command_ran

 width = (inner_W-2*t)+(W-inner_W+2*t)*ss

 height = (inner_L-2*t)+(L-inner_L+2*t)*ss

 generate_command(xi, yi, width, height)

 check_command_ran = "inner_ring_subtract"

def generate_outer_ring(xi, yi):

 global check_command_ran

 width = W+2*t

 height = L+2*t

 generate_command(xi, yi, width, height)

 check_command_ran = "outer_ring"

def generate_outer_ring_subtract(xi, yi):

 global check_command_ran

 width = W

 height = L

 generate_command(xi, yi, width, height)

 check_command_ran = "outer_ring_subtract"

def generate_inner_rect(xi, yi):

 global check_command_ran

 width = inner_W

 height = inner_L

 generate_command(xi, yi, width, height)

 check_command_ran = "inner_rect"

def store_and_print(line: str, file):

 print(line)

 print(line, file=file)

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

16

6. Automation for generation of the .dxf files
def automation(xi, yi, ss):

 if file_name == "overall":

 generate_inner_ring(xi, yi, ss)

 generate_inner_ring_subtract(xi, yi, ss)

 generate_outer_ring(xi, yi)

 generate_outer_ring_subtract(xi, yi)

 generate_inner_rect(xi, yi)

 elif file_name == "inner_ring":

 generate_inner_ring(xi, yi, ss)

 elif file_name == "inner_ring_subtract":

 generate_inner_ring_subtract(xi, yi, ss)

 elif file_name == "outer_ring":

 generate_outer_ring(xi, yi)

 elif file_name == "outer_ring_subtract":

 generate_outer_ring_subtract(xi, yi)

 elif file_name == "inner_rect":

 generate_inner_rect(xi, yi)

7. Import needed libraries
import math

from re import L

from scipy import interpolate

import matplotlib.pyplot as plt

import numpy as np

8. Using the functions written above to read data of S11 curve, and interpolate it using direct

interpolation (which gave the best result)
y, x = read_data()

x.reverse()

y.reverse()

print("unwrapped phase:", x)

print("unwrapped ss:", y)

#direct

tck = interpolate.splrep(x, y, s=0)

xfit = np.arange(0, 365, 1)

yfit = interpolate.splev(xfit, tck, der=0)

plt.plot(x, y, 'ro')

plt.plot(xfit, yfit,'b')

plt.plot(xfit, yfit)

plt.title("Direct spline interpolation --> ss over phase")

plt.show()

9. Using the graph generated and functions above to get the phase at each point of the

reflectarray and adjust the drawing accordingly
#actual code

#verifying setup

store_and_print("logs:\n", info_file)

store_and_print(f"frequency: {freq}Hz", info_file)

store_and_print(f"height of horn: {horn_height}mm", info_file)

store_and_print(f"number of cells horizontally: {across}", info_file)

store_and_print(f"number of cells vertically: {down}\n", info_file)

accounting for first phase

first_phase_rad, origin_x , origin_y = get_phase(across//2, down//2)

first_phase_deg = first_phase_rad * 57.296 % 360

store_and_print(f"first phase, {first_phase_deg}, occurs at {origin_x, origin_y}", info_file)

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

17

entire array

for x in range(across):

 for y in range(down):

 specific_phase, xi, yi = get_phase(x, y)

 specific_phase = (specific_phase - first_phase_rad) * 57.296 % 360

 ss = interpolate.splev(specific_phase, tck)

 printfile.write(f'At ({xi},{yi}), phase = {specific_phase}, ss = {ss}\n')

 automation(xi, yi, ss)

verification

store_and_print(f"width: {across*UCsize_length_x}mm across", info_file)

store_and_print(f"length: {down*UCsize_length_y}mm down", info_file)

print(f"command ran: {check_command_ran}")

print(f"saving to file {file_name}\n")

info_file.close()

outfile.close()

printfile.close()

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

18

APPENDIX D: Code developed for calculation and plotting of spillover

efficiency and illumination frequency of reflectarray

In this section, the code written in Python for calculations on the efficiency calculations (refer

to Page 7 and 8) is presented, each with brief explanations on its purpose. There are 7 parts to

this.

1. In a python file named machine.py, define the parameters of the feed horn element

#actual parameters

qe=qh=8.29

c = 3.0*10**8

GHz = 12.7

lamb = c/(GHz*10**9)

length_a = 0.283/lamb

length_b = 0.1835/lamb

2. Defining the functions according to the paper [6]. Power A denotes the power received by

reflectarray elements and radiated by the feed. Power B is the power radiated by the feed that

goes onto the array. Power C is the power radiated in the front forward facing hemisphere of

the horn.
def fa(R):

 a = lambda y,x:

(((R/(R**2+x**2+y**2)**(1/2))**(qe+2))*((y**2)/(x**2+y**2))+((R/(R**2+x**2+y**2)**(1/2))**(qh+

1))*((x**2)/(x**2+y**2)))/((R**2+x**2+y**2)**(1/2))

 ans = 4*integrate.dblquad(a, 0, length_a/2, 0, length_b/2)[0]

 return ans

def fb(R):

 b = lambda y,x: R**(2*qe+1)*(R**2+x**2+y**2)**(-3/2-qe)

 ans = 4*integrate.dblquad(b, 0, length_a/2, 0, length_b/2)[0]

 return ans

def fc():

 return math.pi*(1/(1+2*qe)+1/(1+2*qh))

3. Import needed libraries
from scipy import integrate

import math

4. Defining illumination efficiency and spillover efficiency
fc = fc()

def Eff_ill(R):

 return fa(R)*fa(R)/(fb(R)*(length_a*length_b))

def Eff_spill(R):

Keenan Tan Han-Ming PH015

Celeste Tan Reflectarray design based on rectangular Phoenix cell

19

 return fb(R)/fc

ei = Eff_ill(24)

es = Eff_spill(24)

5. In another file named plot.py, we imported the matplotlib package as well as the numpy

package to generate a plot.
import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

6. We imported machine.py to call the illumination efficiency and spillover efficiency

calculation functions

from machine import Eff_ill, Eff_spill

7. Looping through different R values, where R is the height between the array and horn, we

calculated the efficiency at each point to populate the graph graph.

starting_R = 1

ending_R = 20

efficiency=[]

es=[]

ei=[]

R=[]

steps = np.arange(starting_R, ending_R, 0.1)

for n in steps:

 R.append(n)

 efficiency_at_point = Eff_spill(n)*Eff_ill(n)

 es.append(Eff_spill(n))

 ei.append(Eff_ill(n))

 efficiency.append(efficiency_at_point)

plt.plot(R, efficiency, color='red', linestyle='-', label='µₛ×µᵢ')

plt.plot(R, es, color='green', linestyle='--', label='µₛ')

plt.plot(R, ei, color='blue', linestyle='-.', label='µᵢ')

plt.title('Graph of Efficiency against R/λ', fontsize=14)

plt.xlabel('R/λ', fontsize=14)

plt.ylabel('Efficiency', fontsize=14)

plt.legend()

plt.grid(True)

plt.show()

