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Abstract 

 

This paper presents a novel broadband single-substrate reflectarray design using rectangular 

Phoenix cells. The reflectarray is designed with a centre-fed horn to produce a broadside beam at 

12.7 GHz for the vertical polarization. The rectangular Phoenix cell achieves a more linear phase 

change (compared to a square Phoenix cell), allowing for more accurate phase control. Full phase 

coverage can be achieved at the designed band 12.1-13.9 GHz. The measured results show that the 

proposed reflectarray achieved 30.1% efficiency.  
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1. INTRODUCTION 

Printed reflectarrays are arrays of printed elements with varying sizes, each tailored to 

compensate for the different phase delays from the illuminating feed. They have the most 

salient features of both the traditional parabolic reflector antenna and microstrip array 

technology. [1] Due to their low profile, low mass and flat structures, reflectarrays can 

overcome mounting issues and conformal requirements. They are commonly used in micro-

spacecrafts and satellites. [2] 

One interesting element used for a reflectarray is the Phoenix cell, whose geometry 

exhibits a cyclic evolution, returning to its initial arrangement after a 360º phase cycle. [3] 

However, as far as the authors are aware of, the Phoenix cells used thus far are all squarish. 

In this paper, we propose a rectangular Phoenix cell in Section 2 [4]. The most optimal 

prototype of the reflectarray using the given unit cell is determined in Section 3, and results are 

discussed in Section 4.  

2. UNIT CELL CONFIGURATION 

The proposed 9×12 mm2 unit cell is shown in Fig. 1. It comprises the central 

rectangular patch and the outer ring, which are fixed. The size-variable ring grows in size 

from the inner rectangle patch to the outer ring, with a width:length ratio of 7:10. The unit 

cell is fabricated on a 0.5mm-thick FR4 substrate. The single layer unit cell of FR4 allows for 

simpler and cheaper fabrication. The substrate is separated from the ground plane by an air 

gap of 6mm. This spacing is optimized through simulation (see Appendix A, Fig. 1 for 

process) to achieve a slow-varying phase slope as shown in Fig. 2. The phase shift is 

determined by the growth variable s. The total phase shift is 360º which is typical of a 

Phoenix cell [3].  
 

 
Fig. 1. (Left) Geometry of the proposed rectangular Phoenix cell. (Right) Illustration of growing ring (red). 

 

To investigate the phasing behaviour of the unit cell, plane waves polarized vertically 

and horizontally at 12.7 GHz were incident normally on the unit cell using periodic boundary 

conditions in CST Studio Suite. The phase and magnitude of the reflected wave against the 

scaling parameter s (between 0 and 1) are plotted in Fig. 2, with “Rectangle long pol” and 

“Rectangle short pol” representing the polarized wave parallel to long side (vertical) and 

short sides (horizontal) of the rectangular cell, respectively. 
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Fig 2. Phase responses of the rectangular Phoenix 

cell vs. scaling parameter, s, for 2 polarizations at 

12.7GHz 

Fig 3. Phase responses of each Phoenix cell at 

12.7GHz 

 
The optimal polarization at 12.7GHz is thus along the longer side. We compared this 

unit cell design against the square Phoenix unit cell design [5] in Figure 3. In this work, the 

lengths of the squares are equal to the short (9mm) and long sides (12mm) of the rectangular 

design, respectively (see Fig. 4). All of them share close to the same phase range of 360° due 

to the Phoenix cell characteristic. The key characteristic of the rectangular Phoenix cell (for 

long pol) is its gentlest phase gradient, which is almost linear. The linearity allows for better 

and more accurate phase control as s changes. It will also mean greater tolerance if there is 

any slight fabrication error. 

 
Fig 4. Three different Phoenix unit cell designs: 9×9mm2, 12×12mm2, 9×12 mm2. 

3. DESIGN OF REFLECTARRAY 

Using the three unit cell designs in Fig. 4, 3 reflectarrays with the aforementioned 

constraints of the substrate’s size were designed and simulated. Each approximately A4-size 

reflectarray is illuminated by a feed horn placed vertically above its geometrical centre at the 

optimal height of 179.2mm, determined from the -10dB point of the horn’s main beam. An 

example of the reflectarray using the rectangular Phoenix cell is shown in Fig. 5. 

 

 
Fig 5. (a) Phase at each point calculated and represented by color (b) 2D form of best designed reflectarray 

accounting for the phase at each point (c) The reflectarray with all its components in CST (d) The milled and 

mounted prototype 

  

  
  

9mm 
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The simulated gains and their corresponding efficiencies of the three reflectarrays are 

summarized in Table 1. The larger square unit cell array is much less efficient than the other 

two designs. This is because the phase distribution across the reflectarray with the larger 

square unit cell is a poorer approximation of the desired distribution. The smaller square unit 

cell and rectangular unit cell arrays share similar efficiencies. 

In addition, the rectangular cell has an almost linear phase shift as well at 13.4 GHz 

(Appendix A, Fig 2). Therefore, the same rectangular Phoenix cell can potentially be used for 

either polarization, albeit at different frequencies. 

 

Table 1. Simulated gains and computed efficiencies of reflectarrays using different unit cells. 

 Smaller Square Larger Square Rectangle 

Max Gain (dBi) 25.92 23.77 26.09 

Efficiency (%) 33.34 20.33 34.71 

 

Figure 6 shows that the reflectarray antenna using rectangular Phoenix cells has about 

1.77 GHz bandwidth (or 13.6 %) for gain of 26.5±0.8 dB. At the designed frequency of 

12.7GHz, the simulated realized gain of the reflectarray is 26.714 dBi, giving it a 40.1% 

efficiency. 

 
Fig 6. Gain vs. frequency for vertical polarization. 

 

4. EXPERIMENTAL VALIDATION 

The reflectarray using the proposed rectangular Phoenix unit cell shown in Figure 5 

has been designed (see Appendix D for program) and fabricated. To create the air gap, 6 mm 

PLA spacers with a ±0.01 mm tolerance were used. Absorbers were placed around the 

reflectarray to prevent other reflections from the metal mount. The reflectarray was held 

down by masking tape. The support for the horn is made of wood, reducing the loss incurred 

from its blockage. The reflectarray is measured in the tapered chamber at TL@NUS (see 

Appendix B for photographs).  

The measured results are compared against simulated results in Figure 7. The 

maximum gain in the measured azimuth and elevation (see also Table 2), differs by about 

0.4dBi. While the difference is within measurement error, it could also be due mechanical 

alignment error between the reflectarray and the horn. We estimate that the reflectarray is 

misaligned in the broadside by about ±1°. Comparing the gain in the azimuth cut against the 

simulated gain, the gain difference is about 1.2dBi. This loss in gain can be seen in the higher 

measured first sidelobes. 

 



Keenan Tan Han-Ming  PH015 

Celeste Tan  Reflectarray design based on rectangular Phoenix cell 

 

5 

 
Fig 7. Measured radiation patterns for the reflectarray for azimuth and elevation cuts at 12.7GHz 

 

Table 2. Realized gain of reflectarray prototype. 

 
Measured in 

Azimuth Cut 

Measured in 

Elevation Cut 
Simulated 

Max gain (dBi) 25.478 25.096 26.714 

Efficiency (%) 30.1 40.1 

The measured gain-bandwidth is compared against the simulated results in Figure 8. 

The measured results are lower than the simulated results as expected. The gain loss is 

possibly due to the blockage by the horn and its support, and misalignment issues. The 

corresponding efficiency of the reflectarray against frequency is plotted in Figure 9 [1]. The 

maximum efficiency is at 13.6 GHz. 

 
Fig 8. Gain against frequency of both the measured and simulated reflectarrays 
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Fig 9. Efficiency against frequency for measured and simulated reflectarrays 

5. LIMITATIONS 

The reflectarray was designed for an existing horn that was optimal for 8.0-12.4 GHz, 

even though our frequency of interest was 12.7 GHz. The horn also had a circular shaped 

radiation beam at -10dB. Therefore, it will not be able to efficiently illuminate the rectangular 

reflectarray. To improve the illumination efficiency, the horn can be offset from the centre of 

the reflectarray so that its elliptically shaped beam at the plane of the reflectarray will 

illuminate a wider portion of the reflectarray. 

Due to time constraints and availability of the measurement resources (MP and 

facility), we only had half a day to set up and measure the reflectarray. As the feed horn was 

not aligned accurately in the broadside of the reflectarray (feed horn was “centered” using a 

plumbline which was susceptible to human error), the horn and reflectarray was offset by 

about 1°, causing a shift in the main beam of the reflectarray. Furthermore, the reflectarray 

was not secured enough, such that it suffered a noticeable shift every time it was moved or 

mounted. The measurement was thus compromised.  

6. FURTHER WORK 

 After fabricating the reflectarray, we did an analysis on the optimal height of the horn 

to maximize efficiency of the antenna [6]. We modeled the feed pattern F of our horn as a 

𝑐𝑜𝑠𝑞𝜃 function. Approximating the feed radiation pattern to be perfectly circular, we got a 𝑞𝑒 

and 𝑞ℎ of 8.29 (in the E- and H- planes), where the horn has -10dB at 𝜃=29.5°. We then 

plotted a graph of efficiency against R/λ by calculating its spillover efficiency and 

illumination efficiency (see Appendix E for program written). 

Our fabricated height of 179.2mm (or R=7.59λ) was obtained by using the -10dB of 

the horn’s radiation pattern at the long edge of the reflectarray to minimize spillover. The 

optimal height with maximum efficiency is 66.3% using the written program was found to be 

247.8mm (or R=10.5λ) as shown in Figure 10. For our chosen height, the expected efficiency 

is 59.9%. Thus, the efficiency of the proposed reflectarray antenna could be improved upon if 

the horn was moved further away from the array.  
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Fig 10. Efficiency against height (𝜇𝑖: illumination efficiency, 𝜇𝑠: spillover efficiency). 

7. CONCLUSION 

A broadband reflectarray design using a rectangular Phoenix cell has been designed. 

The reflectarray has a gain of 26.5±0.8 dB from 12.1 to 13.9 GHz. The Phoenix cell achieves 

an almost linear phase shift, allowing for greater phase control and increased fabrication 

tolerance. The designed reflectarray achieved an efficiency of 30.1%, compared to the 

simulated 40.1%. The measured results are not ideal, partly caused by inefficient illumination 

and alignment issues which can be further improved on. 
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APPENDIX A: Antenna design process 

In this section, additional information or factors considered in designing the antenna is 

provided. Supplementing graphs of lesser importance are placed here, followed by a page 

number that the reader should reference for context on the graphs and how they factor into 

design. 

 

 
Fig 1 (Page 1). Varying the air height to obtain optimal phase curve shape 

 

 
Fig 2 (Page 2, Page 3). Phase responses of the rectangular Phoenix cell for each sub-wavelength element at 

13.4GHz for both polarizations. 

 

 



Keenan Tan Han-Ming  PH015 

Celeste Tan  Reflectarray design based on rectangular Phoenix cell 

 

10 

 
Fig 3 (Page 3). Gain of all the different unit cell array in azimuth cut (Table 1) 
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APPENDIX B: Information on reflectarray prototype 

In this section, photos of the fabricated reflectarray prototype in construction or measurement 

are placed to give readers a better understanding of the design. Information on the feed horn 

is placed here as well. 

 

 
1. Reflectarray milled out of FR4 in Temasek Laboratories @ NUS. 

 

 

 
2. Reflectarray setup mounted in the antenna measurement chamber at Temasek Laboratories @ NUS 
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3. Different perspectives of the feed horn used and its dimensions in CST 

 

 

 
4. Assembly parts of the prototype (Left) 3d printed 6mm spacers (Middle & Right) Mounted reflectarray. Note 

that absorbers were placed on the metal support that is larger than the reflectarray. 
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APPENDIX C: Code developed for auto-generation of .dxf reflectarray 

files of proposed design 

There are 9 parts to this section explaining the code written in Python used in the reflectarray 

design. 

1. Automation to generate all five files together 

2. Obtaining the size of the array, the height of the horn, and the functions to determine 

phase at each position of the reflectarray 

3. Reading and formatting the data of S11 graph 

4. Testing the different interpolation types 

5. Setting up the writing of the scripts for LibreCAD to create .dxf files 

6. Automation for generation of the .dxf files 

7. Import needed libraries 

8. Using the functions written above to read data of S11 curve, and interpolate it using direct 

interpolation (which gave the best result) 

9. Using the graph generated and functions above to get the phase at each point of the 

reflectarray and adjust the drawing accordingly 

Each section contains the code used as well as comments briefly explaining what each section 

does. When pieced together, the entire program should run using a simple iteration by 

changing the type_of_gen variable from 0 to 5, with 0 producing the overall.dxf with all the 

components in one .dxf file. 

 

1. Automation to generate all five files together 
actual = True #change to false if maximise array 

phi_0_angle = 30.368 * math.pi / 180 #smaller angle 

phi_90_angle = 27.8 * math.pi / 180 #larger angle 

 

file_names = ["overall", "inner_ring", "inner_ring_subtract", "outer_ring", "outer_ring_subtract", "inner_rect"] 

 

 

file_name = file_names[type_of_gen] 

folder_name = "<insert folder name>" 

printfile = open(f"{folder_name}/prints.txt", "w") #to record the phase and ss of each positions 

info_file  = open(f"{folder_name}/info.txt", "w") #to record the height, frequency and everything that is printed 

outfile = open(f"{folder_name}/{file_name}.txt", "w") #for generating the actual commands 

 

2. Obtaining the size of the array, the height of the horn, and the functions to determine phase 

at each position of the reflectarray 
thetaB = 0 

phiB = 0 

freq = 12.7*pow(10, 9) 

wavelength = 3*pow(10, 8)*pow(10, 3)/freq 

k0 = 2*math.pi/wavelength 

UCsize_length_x = 9 #mm 

UCsize_length_y = 12 #mm 

a4size_x = 297 #mm 

a4size_y = 210 #mm 

 

def determine_across_down(fullsize_x, fullsize_y): 

    down = fullsize_y // UCsize_length_y - 2 

    horn_height = (down * UCsize_length_y / 2) / math.tan(phi_90_angle) 

    max_10db_x = horn_height * 2 * math.tan(phi_0_angle) 

    across = int(max_10db_x // UCsize_length_x) if actual else fullsize_x // UCsize_length_x - 2 #-2 is taken away 

because of gap already beside 

    return across, down, horn_height 

 

across, down, horn_height = determine_across_down(a4size_x, a4size_y) 
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center_x = across*UCsize_length_x/2 

center_y = down*UCsize_length_y/2 

source_z = horn_height 

 

def getDi(xi, yi): 

    # assuming xi, yi is the distance from the center in cartesian x and y 

    di = math.sqrt(abs(xi)**2+abs(yi)**2+source_z**2) 

    return di 

 

def get_phase(x, y): 

    xi = UCsize_length_x/2+x*UCsize_length_x-center_x 

    yi = UCsize_length_y/2+y*UCsize_length_y-center_y 

    di = getDi(xi, yi) 

    phase = k0*(di-(xi*math.cos(phiB)+yi*math.sin(phiB))*math.sin(thetaB)) 

    return phase, xi, yi 

 

3. Reading and formatting the data of S11 graph 
#reading data 

 

def read_data(): 

    infile = open("<insert results file>.txt", "r") 

    data = infile.read().replace('"',"").strip().split("\n") 

    infile.close() 

    x_values = [] 

    y_values = [] 

    # data[0] = data[0][3:] 

    correction = False 

    for index, item in enumerate(data): 

        x, y = item.split("\t") 

        x_values.append(float(x)) 

        if index == 0: 

            first = float(y) 

        if index != 0 and abs(float(y) - float(prev_y)) > 100: #accounting for phase jump 

            correction = True 

        if correction: 

            y_values.append(float(y)-first) 

        else: 

            y_values.append(float(y)-first+360) 

        prev_y = y 

    # print("original ss:", x_values) 

    # print("original phase:", y_values) 

    return x_values, y_values 

 

4. Testing the different interpolation types 
def linear(): 

    plt.plot(x,y,'ro') 

    plt.plot(x,y, 'b') 

    plt.title("Data set and linear interpolation") 

    plt.show() 

 

def direct(): 

    tck = interpolate.splrep(x, y, s=10) 

    xfit = np.arange(-282, 80, 1) 

    yfit = interpolate.splev(xfit, tck, der=0) 

    plt.plot(x, y, 'ro') 

    plt.plot(xfit, yfit,'b') 

    plt.plot(xfit, yfit) 

    plt.title("Direct spline interpolation") 

    plt.show() 

 

def univariate(): 

    s = interpolate.InterpolatedUnivariateSpline(x, y) 
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    xfit = np.arange(0, 1.1, 0.0000001) 

    yfit = s(xfit) 

    plt.plot(x, y, 'ro') 

    plt.plot(xfit, yfit,'green') 

    plt.title("InterpolatedUnivariateSpline interpolation") 

    plt.show() 

 

5. Setting up the writing of the scripts for LibreCAD to create .dxf files 
W = 7 #of outer ring 

L = 10 #of outer ring 

inner_W = 2 #of inner ring 

inner_L = inner_W*L/W #of inner ring 

t = 0.3 #thickness of outer ring 

h = 0.001 #thickness of trace 

 

def generate_command(xi, yi, width, height): 

    outfile.write('li\n') 

    outfile.write(f'{xi-width/2},{yi-height/2}\n') 

    outfile.write(f'@{width},0\n') 

    outfile.write(f'@0,{height}\n') 

    outfile.write(f'@-{width},0\n') 

    outfile.write('c\nk\n\n') 

 

def generate_inner_ring(xi, yi, ss): 

    global check_command_ran 

    width = inner_W+(W+2*t-inner_W)*ss 

    height = inner_L+(L+2*t-inner_L)*ss 

    generate_command(xi, yi, width, height) 

    check_command_ran = "inner_ring" 

 

def generate_inner_ring_subtract(xi, yi, ss): 

    global check_command_ran 

    width = (inner_W-2*t)+(W-inner_W+2*t)*ss 

    height = (inner_L-2*t)+(L-inner_L+2*t)*ss 

    generate_command(xi, yi, width, height) 

    check_command_ran = "inner_ring_subtract" 

 

def generate_outer_ring(xi, yi): 

    global check_command_ran 

    width = W+2*t 

    height = L+2*t 

    generate_command(xi, yi, width, height) 

    check_command_ran = "outer_ring" 

 

def generate_outer_ring_subtract(xi, yi): 

    global check_command_ran 

    width = W 

    height = L 

    generate_command(xi, yi, width, height) 

    check_command_ran = "outer_ring_subtract" 

 

def generate_inner_rect(xi, yi): 

    global check_command_ran 

    width = inner_W 

    height = inner_L 

    generate_command(xi, yi, width, height) 

    check_command_ran = "inner_rect" 

 

def store_and_print(line: str, file): 

    print(line) 

    print(line, file=file) 

 



Keenan Tan Han-Ming  PH015 

Celeste Tan  Reflectarray design based on rectangular Phoenix cell 

 

16 

6. Automation for generation of the .dxf files 
def automation(xi, yi, ss): 

    if file_name == "overall": 

        generate_inner_ring(xi, yi, ss) 

        generate_inner_ring_subtract(xi, yi, ss) 

        generate_outer_ring(xi, yi) 

        generate_outer_ring_subtract(xi, yi) 

        generate_inner_rect(xi, yi) 

    elif file_name == "inner_ring": 

        generate_inner_ring(xi, yi, ss) 

    elif file_name == "inner_ring_subtract": 

        generate_inner_ring_subtract(xi, yi, ss) 

    elif file_name == "outer_ring": 

        generate_outer_ring(xi, yi) 

    elif file_name == "outer_ring_subtract": 

        generate_outer_ring_subtract(xi, yi) 

    elif file_name == "inner_rect": 

        generate_inner_rect(xi, yi) 

 

7. Import needed libraries 
import math 

from re import L 

from scipy import interpolate 

import matplotlib.pyplot as plt 

import numpy as np 

 

8. Using the functions written above to read data of S11 curve, and interpolate it using direct 

interpolation (which gave the best result) 
y, x = read_data() 

x.reverse() 

y.reverse() 

print("unwrapped phase:", x) 

print("unwrapped ss:", y) 

 

#direct 

tck = interpolate.splrep(x, y, s=0) 

xfit = np.arange(0, 365, 1) 

yfit = interpolate.splev(xfit, tck, der=0) 

plt.plot(x, y, 'ro') 

plt.plot(xfit, yfit,'b') 

plt.plot(xfit, yfit) 

plt.title("Direct spline interpolation --> ss over phase") 

# plt.show() 

 

9. Using the graph generated and functions above to get the phase at each point of the 

reflectarray and adjust the drawing accordingly 
#actual code 

 

#verifying setup 

 

store_and_print("logs:\n", info_file) 

store_and_print(f"frequency: {freq}Hz", info_file) 

store_and_print(f"height of horn: {horn_height}mm", info_file) 

store_and_print(f"number of cells horizontally: {across}", info_file) 

store_and_print(f"number of cells vertically: {down}\n", info_file) 

 

# accounting for first phase 

 

first_phase_rad, origin_x , origin_y = get_phase(across//2, down//2) 

first_phase_deg = first_phase_rad * 57.296 % 360 

store_and_print(f"first phase, {first_phase_deg}, occurs at {origin_x, origin_y}", info_file) 



Keenan Tan Han-Ming  PH015 

Celeste Tan  Reflectarray design based on rectangular Phoenix cell 

 

17 

 

# entire array 

 

for x in range(across): 

    for y in range(down): 

        specific_phase, xi, yi = get_phase(x, y) 

        specific_phase = (specific_phase - first_phase_rad) * 57.296 % 360 

        ss = interpolate.splev(specific_phase, tck) 

        printfile.write(f'At ({xi},{yi}), phase = {specific_phase}, ss = {ss}\n') 

        automation(xi, yi, ss) 

 

# verification 

 

store_and_print(f"width: {across*UCsize_length_x}mm across", info_file) 

store_and_print(f"length: {down*UCsize_length_y}mm down", info_file) 

print(f"command ran: {check_command_ran}") 

print(f"saving to file {file_name}\n") 

 

info_file.close() 

outfile.close() 

printfile.close() 
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APPENDIX D: Code developed for calculation and plotting of spillover 

efficiency and illumination frequency of reflectarray 

In this section, the code written in Python for calculations on the efficiency calculations (refer 

to Page 7 and 8) is presented, each with brief explanations on its purpose. There are 7 parts to 

this. 

1. In a python file named machine.py, define the parameters of the feed horn element  

#actual parameters 

qe=qh=8.29 

 

c = 3.0*10**8 

GHz = 12.7 

lamb = c/(GHz*10**9) 

 

length_a = 0.283/lamb 

length_b = 0.1835/lamb 

 

2. Defining the functions according to the paper [6]. Power A denotes the power received by 

reflectarray elements and radiated by the feed. Power B is the power radiated by the feed that 

goes onto the array. Power C is the power radiated in the front forward facing hemisphere of 

the horn. 
def fa(R): 

 

    a = lambda y,x: 

(((R/(R**2+x**2+y**2)**(1/2))**(qe+2))*((y**2)/(x**2+y**2))+((R/(R**2+x**2+y**2)**(1/2))**(qh+

1))*((x**2)/(x**2+y**2)))/((R**2+x**2+y**2)**(1/2)) 

 

    ans = 4*integrate.dblquad(a, 0, length_a/2, 0, length_b/2)[0] 

    

    return ans 

 

def fb(R): 

 

    b = lambda y,x: R**(2*qe+1)*(R**2+x**2+y**2)**(-3/2-qe)   

 

    ans = 4*integrate.dblquad(b, 0, length_a/2, 0, length_b/2)[0] 

    

    return ans 

 

def fc(): 

    return math.pi*(1/(1+2*qe)+1/(1+2*qh)) 

 

3. Import needed libraries  
from scipy import integrate 

import math 

 

4. Defining illumination efficiency and spillover efficiency  
fc = fc() 

 

def Eff_ill(R): 

    return fa(R)*fa(R)/(fb(R)*(length_a*length_b)) 

 

def Eff_spill(R): 
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    return fb(R)/fc 

 

ei = Eff_ill(24) 

es = Eff_spill(24) 

 

5. In another file named plot.py, we imported the matplotlib package as well as the numpy 

package to generate a plot. 
import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

 

6. We imported machine.py to call the illumination efficiency and spillover efficiency 

calculation functions 

 

from machine import Eff_ill, Eff_spill 

 

7. Looping through different R values, where R is the height between the array and horn, we 

calculated the efficiency at each point to populate the graph graph. 
 

starting_R = 1 

ending_R = 20 

    

efficiency=[] 

es=[] 

ei=[] 

R=[] 

 

steps = np.arange(starting_R, ending_R, 0.1) 

 

for n in steps: 

    R.append(n) 

    efficiency_at_point = Eff_spill(n)*Eff_ill(n) 

    es.append(Eff_spill(n)) 

    ei.append(Eff_ill(n)) 

    efficiency.append(efficiency_at_point) 

 

plt.plot(R, efficiency, color='red', linestyle='-', label='µₛ×µᵢ') 

plt.plot(R, es, color='green', linestyle='--', label='µₛ') 

plt.plot(R, ei, color='blue', linestyle='-.', label='µᵢ') 

plt.title('Graph of Efficiency against R/λ', fontsize=14) 

plt.xlabel('R/λ', fontsize=14) 

plt.ylabel('Efficiency', fontsize=14) 

plt.legend() 

plt.grid(True) 

plt.show() 

 


